

Battery-less wireless sensors based on low power UHF RFID tags Battery-less wireless devices

Seville, September 2010

Confidential | Wireless Sensors 2010

Index

- Introduction
- Wireless sensor tag issues
- Passive tag design
- Implementation
- Results
- Conclusions

Medical applications in the future are likely to benefit greatly from ultra low power electronics especially in implanted, home care, surgical, and emergency monitoring.

- Aging population.
- Increasing quality of life expectancy: new medical treatment trends
 - > Monitoring.
 - ➢ Wireless.
 - > Battery-less.
 - ≻ Home care.
- Rapid technology development.
- Increase asset utilization with real-time tracking.
- Reduce errors by tracking medical devices.

Introduction RFID Sensor Healthcare Applications

- Medicine and Healthcare:
 - Fall Detection
 - Pressure sensor on medical instruments
 - Patient temperature
 - Parkinson
 - Post surgery awakening
 - Etc.

Introduction Healthcare trends

- Cost reduction can be achieved using home-based telemonitoring services.
 - > Fewer days in hospitals.
- Home telemonitoring has also led to very high patient satisfaction.
- New motivation for the development of low-power noninvasive medicalmonitoring devices: reduce health care costs.
- Power problem: the most critical limitation of previous realizations
 - Medical monitoring has been focused on reducing the overall power consumption of such devices.
 - > Batteries must be removed: heavy, cost, constant recharging or replacing.
- To succeed this objective:
 - Low power rectifiers to harvest RF power in voltage and current capabilities to supply analog, processing and communication circuits, and the sensor.
 - > Ultra-low-power sensors.

Wireless sensor tag issues

O I S C N S

- Power is the main problem.
 - > Active devices causes the main power dissipation when radio is active.
 - > Reduce the standby power.
 - > Minimize peak currents.
- Time, a problem related to power.
 - > More transmission and/or acquisition imply more power consumption.
- Size, an important issue.
 - ≻Antenna.
 - > Passives and quartz required by the radio devices.
 - > Increase level of integration.

Passive tag design

- RF energy harvester: Voltage Multiplier (VM) and supply capacitor (C_{SUPPLY}).
- Band-gap and two voltage regulators.
- One unregulated output , in order to provide an input for external regulators.
- Voltage Limiter (VL)
- Clock generator.
- ASK demodulator.
- PSK Load modulator.
- Two Power-On-Reset (POR).
- Digital RFID UHF C1G2 protocol.
- Digital interface for sensor communication.

Passive tag design System constraints

- Forward link constraints: Reader \rightarrow Tag.
- Backward link constraints: Tag \rightarrow Reader.

Passive tag design. System constraints Forward link constraints: Reader \rightarrow Tag (I)

- > Minimum voltage at the input of the voltage multiplier:
 - Input impedance.
 - FE quality factor.
- Modulation limitations
 - C_{SUPPLY} receives energy.
 - C_{SUPPLY} receives no energy.
- Backward link constraints: Tag \rightarrow Reader

Probability error
$$P_{error} = \frac{1}{2} \left\{ erf\left(\frac{Asin(\theta)(2cos(\varphi) - 1)}{2\sigma}\right) erf\left(\frac{Asin(\theta)}{2\sigma}\right) \right\} \le 10^{-3}$$

Passive tag design. Analog front-end

- Voltage Multiplier (VM) and supply capacitor (C_{SUPPLY}).
- Voltage Limiter (VL)
- Bandgap and two voltage regulators.
- Clock generator.
- ASK demodulator.
- PSK Load modulator.
- Two Power-On-Reset (POR).

Passive tag design. Analog front-end Matching network and voltage multiplier (I)

O I S C N S

- Design steps: Q_{MN} , R_{IC} , N, diodes, C_S , C_P .
 - Determine the minimum input voltage (V_{MIN}) necessary for the correct performance of the tag without the matching network.
 - > Calculate the input impedance.
 - Calculate the matching network to obtain the maximum power transference between the antenna and the tag.

 V_2

Passive tag design. Analog front-end **Voltage limiter**

- Differential amplifier.
- Voltage supply ratio: V₂.
- V₂ and V_{BG} comparison.
- Limited value

> very stable > V_{BG}, very stable against

temperature and process

variations.

VSUPPLY

O I S C N S

- Envelope detector: a rectifier in Greinacher's topology, a low-pass filter, implemented with diodes and capacitors C_F, and a differential amplifier.
- The incoming signal is modulated:
 - > V_{REF+} remains constant (because diodes prevent C_F to discharge), while

Passive tag design. Analog front-end Load modulator

- Load modulator changes the input reactance of the tag:
 - > PSK modulation is generated.
- Single switch and a capacitor.
- Output is connected to the differential antenna.
- Soft and spurious-free transitions:
 High-input capacitance of M₁-M₂.
 Tag input impedance:
 Reactance change.
 Maximize phase difference.

Output +

- Logical intelligence to communicate with the reader making use of the analog front-end.
- The communication protocol defined in the standard has to be implemented

Passive tag design. Digital core Power management

Working states of the digital co	ore.				
	STRTP	STDBY	RX	CNTRL	ТХ
PM	ON	ON	ON	ON	ON
SYMBOL DETECTOR	OFF	ON	ON	OFF	OFF
COMMAND DECODER	OFF	OFF	ON	OFF	OFF
CONTROL	ON	OFF	OFF	ON	OFF
MEMORY ACCESS	ON	OFF	ON	ON	ON
TX	OFF	OFF	OFF	OFF	ON

ESSCIRC 2010, Workshop ULTRAsponder project, Seville, 17th September 2010

16

- The EPC C1G2 is specifically designed for identification applications and does not include support for sensors.
- Different approaches can be used to integrate sensors in C1G2 networks.
- In order to ensure the correct operation of the C1G2 network, compatibility between all the elements in the network is required.
- Three main approaches can be used:
 - > Define a user command to access the sensor.
 - > Replace part of the EPC with the measurement of the sensor.
 - > Map part of the user memory bank to the sensor.

Passive tag design. Digital core Sensor integration (II)

User command.

Memory mapping.

Implementation

- Prototype of a wireless passive sensor combining:
 - > Ultra-low power digital commercial sensor.
 - > Module based digital core:
 - FPGA, its use makes the prototype to be versatile for any kind of sensor

Power management.

EPC C1G2 standard.

- Digital interface in order to communicate with the sensor.
- Digital core replica power consumption module.
- > Integrated analog frontend with three output voltages:
 - The analog front-end has been designed Two regulated at 1.4V and 2.1V.
 - One unregulated, but limited around 3.0V.
 - A low-drop out voltage regulator (LDO) is connected to 3.0V in order to supply many commercial sensors suitable for the desired prototype.

Implementation

- Analog front-end
- Digital core
- Digital commercial sensors
- Front-end setup with external regulator
- Prototype
 - > Digital core power consumption
 - > Supply capacitor
 - > Sensor
 - > Wireless sensor prototype
- Reader software implementation

Implementation Analog front-end

- A low cost 2-poly, 4-metal, 0.35µm CMOS standard process. VDD Pads
 - > Schottky diodes.
 - > High resistive poly.
 - > EEPROM.
- 7.4µA current consumption.
- 1.4nF supply capacitor
 - > area limitation.

RFID analog front-end layout (1777x1262µm²).

arsens

SOLUTIONS

Implementation **Digital core (I)**

- The digital core design has been described in VHDL:
 - \succ The design can be easily targeted either to ASIC or to FPGA implementation.
- A first version of the digital core has been implemented on ASIC for a 0.35µm process.
 - > The design consists on an EPC C1G2 compatible core and a communication interface towards the sensor.
 - \geq In the implemented version, a proprietary communication protocol has been used to communicate with a digital sensor

EPC C1G2 digital core layout.

 \mathbf{C}

sens

- In order to allow standard serial communication with commercial sensors, additional hardware is required.
- The implementation cannot be reused with a new sensor.
 - > New physical hardware and pads are required.
- Solution to integrate a sensor in the tag allowing the communication with the digital core:
 - > New code has been implemented in a FPGA.
 - The most common digital interface protocols have been added to the VHDL code of the digital core.
 - > No need to fabricate the digital core for a fast and low cost prototype.

 \mathbf{C}

- The current sensor market has a wide portfolio of low and ultra-low power devices.
- A complete range of commercial sensors offers accuracy and low cost with digital interfaces.
- Ultra-low power sensors:
 - > low voltage operation: from 1.4V up to 5.5V.
 - > low quiescent current: from 10µA up to 300µA.
 - > Temperature, pressure, acceleration and humidity.
 - Sampling rate is directly correlated to the average power consumption.

arsens

Implementation Front-end setup with external regulator

Characterize the front-end capabilities to supply a sensor:

An ultra-low guiescent current LDO voltage regulator has been chosen.

> TPS78225 from Texas Instruments, $I_0 = 1\mu A$.

- Reader emulated by a continuous wave 2W EIRP (European regulations).
- Dipole antenna for test purpose has been designed.
- LDO is connected between V_{SUPPLY} and a variable load (R_{LOAD}).
 - \geq Measure the maximum current available for different distances.

arsens

Implementation Prototype

Implementation Reader software implementation

Results Front-end results

- Continuous 2W RF power emission.
- Sensor and digital core replaced by a continuous current consumption through a load resistance, supplied by an external LDO.
- Maximum distance vs. current available (I_{OUT}) analysis: of 15µA@2.5V a 2.4m.

Results Front-end and digital core results

arsens

SOLUTIONS

30

Or sens

Results System results (I)

- Wireless temperature sensor and a wireless accelerometer.
 - > Monitoring the temperature of the tag up to a distance of 2m.
 - > Monitoring the 3-Axis accelerometer of the tag up to a distance around 1m.
- Operation distance limitations: MOTOROLA hand-held MC9090 at 30dBm.
 - > Reduced output power of the hand-held commercial readers.
 - Limitation of 3dB if compared with the previous analysis
 - > Not continuous emissions.
 - The APIs provided by the vendor there is no possibility to have a continuous RF emission without sending commands.

- In order to maximize the communication range of a passive RFID sensor, the analog and digital core of the tag have been optimized with a deep analysis of the dynamic power consumption.
- Measured results show a successful wireless communication from a 2W EIRP output power reader to a digital module plus low power sensor (temperature, pressure, humidity, etc.) with average power consumption lower than 37.5µW.
- The design and experimental results of a battery-less RFID sensor device compatible with the EPC C1G2 protocol has been presented as a suitable solution for many applications.
- These characteristics allow the use of the proposed sensory system in a battery-less wireless sensor network.
- Many advances in low power analog and digital designs must be done to impact in healthcare devices, where miniaturization and cost are mandatory.

Acknowledgements

CEIT

- > Dr. Roc Berenguer.
- > Dr. Juan Francisco Sevillano.
- > Dr. Igone Vélez.
- > Dr. Ainhoa Cortés.
- Dr. Héctor Solar.
- > Dr. Alex Vaz.
- Dr. Daniel Valderas
- Andoni Beriain.
- Erik Fernández.
- Joseba Martín.

- TECNUN:
 - > Dr. Iñigo Gutiérrez.
 - Iñaki Fernández.
- DONEWTECH SOLUTIONS
 - > Dr. Andrés García-Alonso.
- FARSENS
 - Dr. Ibon Zalbide.
 - Dr. Daniel Pardo.
 - > Mikel Choperena.
 - Eduardo d'Entremont.

arsens

SOLUTIONS

FARSENS Contact

FARSENS S.L. Parque Tecnológico de San Sebastián Paseo Mikeletegi, 54 20009 Donostia - San Sebastián Spain

Phone:	(+34) 943 30 80 13
Fax:	(+34) 943 30 80 13

Email: info@farsens.com

arsens

SOLUTIONS